EFFECTS OF PLANT GROWTH-PROMOTING RHIZOBACTERIA ON SOME MORPHOLOGIC CHARACTERISTICS, YIELD AND QUALITY CONTENTS OF HUNGARIAN VETCH

Halil YOLCU^{1*}, Adem GUNES², M. Kerim GULLAP³, Ramazan CAKMAKCI⁴

¹Kelkit Aydın Dogan Vocational Training School, Gumushane University, Gumushane, TURKEY.
 ²Department of Soil Science, Faculty of Agriculture, Ataturk University, Erzurum, TURKEY.
 ³Narman Vocational Training School, Ataturk University, Narman, Erzurum, TURKEY.
 ⁴Department of Agronomy, Faculty of Agriculture, Ataturk University, TURKEY.
 *Corresponding author: halil-yolcu@hotmail.com

Received: 11.10.2012

ABSTRACT

This research study was designed to determine the effects of plant growth-promoting rhizobacteria (PGPR) on some morphological characteristics, yield and quality contents of Hungarian vetch (*Vicia pannonica* Crantz.) in the Kelkit Aydın Dogan Vocational Training School Research Area during 2008-2009 and 2009-2010 plant growing season. The research consisted of a control (without plant growth-promoting rhizobacteria) and 12 different plant growth-promoting rhizobacteria (*Pseudomonas putida* PPB310, *Bacillus cereus* BCB51, *Pantoea agglomerans* PAB58, *Pseudomonas fluorescens* PFC82, *Pseudomonas fluorescens* PF84, *Arthrobacter mysorens* AM235, *Paenibacillus polymyxa* PP315, *Pantoea agglomerans* PAA362, *Bacillus atrophaeus* BA361, *Bacillus megaterium* BMA424, *Bacillus megaterium* BMA479 and *Bacillus subtilis* BS521) seed inoculations and three replicates. Some morphological characteristics (stem diameter, plant height and leaf number), dry matter yield, crude protein, crude protein yield, ADF, NDF, macro and micro-elements (B, Ca, Na, K, Mg, P, S, Cu, Fe, Mn and Zn) were tested in the research study. According to the results of the research study, some of the PGPR treatments had positive effect on morphological characteristics (especially PFC82, BA361 and PAB58), dry matter yield (very little PAA362), crude protein (very little PFC82), ADF and NDF (especially BA361) and macro and micro-elements (especially PAA362) of Hungarian vetch.

Keywords: Hungarian vetch, plant growth-promoting rhizobacteria, dry matter yield, crude protein, macro and micro-elements

INTRODUCTION

Organic animal production activities have begun to spread throughout the world in recent years. As a result of these phenomena, the requirement of organic forage crops production increases for organic livestock. Organic forage crops production in the fertilization especially shows important differences compared to conventional production. Crop rotation systems, intercropping mixtures, green manures, solid and liquid farmyard manures, poultry manures, compost, zeolite and biological fertilizers are used by farmers in the organic agriculture instead of chemical fertilizers (Yolcu 2010).

Uses of plant growth-promoting rhizobacteria isolated from various plants have started to spread in organic agriculture areas by the aim of plant nutrition. Microorganisms promote the circulation of plant nutrients and reduce the need for chemical fertilizers (Cakmakci et al., 2007a). N₂-fixing and P-solubilizing bacteria may be important for plant nutrition by increasing N and P uptake of the plants (Cakmakci et al., 2006). Improvement of plant growth can be achieved by the direct application of plant growth-promoting rhizobacteria to seeds (Cakmakci et al., 2007b). Plant growth-promoting rhizobacteria (PGPR) are beneficial bacteria that colonize plant roots and enhance plant growth using a wide variety of mechanisms (Ashrafuzzaman et al., 2009).

Vetches are commonly used in organic animal feeding throughout the world. Hungarian vetch seeded in the autumn in cold climates doesn't generally suffer from the effects of harsh winters. Hungarian vetch growing faster by benefiting from snow water and early spring rains competes better against weeds. As a result of this, Hungarian vetch provides plenty quality hay production for organic animal feeding.

Numerous studies have been conducted on different crops on the topic of the effects of PGPR (Javaid 2009; Yolcu et al. 2011; Khanna and Sharma 2011; Krey et al. 2011). However, there are currently no adequate number of studies on the topic of the effects of PGPR on the morphological characteristics, yield and quality contents of Hungarian vetch. In this regard, the aim of the present study was to investigate the effectiveness of twelve PGPR on some morphological characteristics, yield and quality contents of Hungarian vetch.

MATERIALS AND METHODS

Characterisation and isolation of bacterial strains

Twelve plant growth-promoting rhizobacteria, 2 fix N_2 (*Arthrobacter mysorens* AM235 and *Bacillus subtilis* BS521) and 10 solubilise P and fix N_2 (*Pseudomonas putida* PPB310, *Bacillus cereus* BCB51, *Pantoea agglomerans* PAB58, *Pseudomonas fluorescens* PFC82, *Pseudomonas fluorescens* PF84, *Paenibacillus polymyxa* PP315, *Pantoea agglomerans* PAA362, *Bacillus atrophaeus* BA361, *Bacillus megaterium* BMA424 and *Bacillus megaterium* BMA479) were used in this study. All strains used in the present study were previously isolated from the acidic rhizosphere of tea growing areas (Cakmakci et al., 2010).

Field experiment and growth conditions

A research study was carried out at the Kelkit Aydin

Dogan Vocational Training School Research Area of Gumushane University in the Northeast of Turkey (1412 m elevation, 40° 08' N, 39° 25' E). Hungarian vetch was sown on October 14, 2008 and October 17, 2009 at a seeding rate of 80 kg ha⁻¹ (Acikgoz 2001). The study design was a randomised complete block with thirteen treatments replicated three times. Each plot size was 3.0 m x 1.68 m, with a 24 cm row spacing and plots were separated by a 2.5 m buffer zone. The treatments were: control (without plant growth-promoting rhizobacteria), 2 fix N₂ (AM235 and BS521) and 10 solubilise P and fix N₂ (PPB310, BCB51, PAB58, PFC82, PF84, PP315, PAA362, BA361, BMA424 and BMA479). The plots were irrigated twice with 15 day intervals after the rains stopped (Serin and Tan, 2001) and were harvested at the embodiment period of bottom fruits (Acikgoz 2001) in 2009 and 2010. Climatic data during the years of study and long term means were shown in Table 1.

Table 1. Climatic data of	the location in 2008, 2009,	2010 and the long-term averag	e (1986-2006) at Kelkit, Turkey.

	J	F	Μ	А	Μ	J	J	Α	S	0	Ν	D	
Years	Total Precipitation (mm) (Monthly)										Total		
2008	40.8	23.3	38.4	51.4	28.4	35.8	2.6	20.0	30.3	35.2	21.1	34.4	361.7
2009	21.3	45.6	57.9	96.3	63.6	25.3	37.4	0.0	71.0	35.1	127.2	33.0	613.7
2010	73.2	24.1	58.2	49.2	57.5	93.5	12.8	0.0	8.2	87.1	1.2	14.2	479.2
1986-2006	33.1	35.5	38.3	57.7	68.3	45.1	14.8	13.8	26.3	50.6	45.1	37.6	466.2
	Mean air temperature (°C) (Monthly)											Mean	
2008	-6.1	-4.4	8.1	11.6	11.7	16.6	20.1	21.5	17.1	11.9	6.6	-0.7	9.5
2009	-0.2	3.2	3.8	7.8	12.9	18.1	19.6	18.0	14.8	13.0	4.7	4.2	10.0
2010	2.0	4.3	6.3	9.0	14.4	19.4	22.3	23.5	19.6	11.9	7.9	5.3	12.2
1986-2006	-1.8	-1.0	3.1	9.4	13.3	16.8	20.2	20.1	16.3	11.3	4.4	0.5	9.4
	Mean relative humidity (%) (Monthly)											Mean	
2008	70.7	71.4	63.0	65.0	68.3	69.6	68.5	69.4	68.3	73.0	72.9	73.2	69.4
2009	71.2	68.7	67.9	63.5	65.5	66.4	67.6	65.8	72.8	67.7	77.2	73.7	69.4
2010	73.0	68.1	65.7	69.1	67.2	66.9	65.5	59.5	65.2	74.6	65.2	64.5	67.0

Plant analysis

Stem diameter, plant height and leaf number were determined as the mean of six plants. Plant samples were oven-dried at 68°C for 48 hours and weighted to find the dry matter yield for each year. Dried Hungarian vetch samples were ground with a Wiley mill to pass a 1-mm screen and then analyzed for chemical characteristics. The total nitrogen was found by using the Kjeldahl method and the crude protein was calculated by multiplying the N content by 6.25 (Bremner 1996). The ADF and NDF concentrations of samples were determined according to Van Soest (1963). B, Ca, Na, K, Mg, P, S, Cu, Fe, Mn and Zn concentrations of Hungarian vetches were found as a result of wet digestion of dried and ground subsamples using a HNO₃-H₂O₂ acid mixture (2:3 v/v) in three steps (first step: 145°C, 75%RF, 5 minutes; second step: 180°C, 90%RF, 10 min and the third step: 100°C, 40 % RF, 10 minutes) in a microwave

(Bergof Speedwave Microwave Digestion Equipment MWS-2) (Mertens 2005a), and inductively Couple

plasma spectrophotometer (Perkin-Elmer, Optima 2100 DV, ICP/OES, Shelton, CT 06484-4794, USA) (Mertens 2005b). Chemical characteristics of research soils (0-45 cm) in 2008 and 2009 were shown in Table 2.

Table 2. Chemical characteristics of research soils (0-45 cm) in2008 and 2009.

Soil Properties	Units	2008	2009
Cation exchangeable capacity	cmol _c kg ⁻¹	23.2	20.1
Total N	mg kg ⁻¹	5.3	13.7
pH	(1:2 soil:water)	7.9	7.4
Organic matter	g kg ⁻¹	1.1	2.7
CaCO ₃	g kg ⁻¹	25.3	28.7
Available P	mg kg ⁻¹	14.2	12.8
Exchangeable Ca	cmol _c kg ⁻¹	15.0	17.0
Exchangeable Mg	cmol _c kg ⁻¹	1.51	1.71
Exchangeable K	cmol _c kg ⁻¹	2.2	2.5
Exchangeable Na	cmol _c kg ⁻¹	0.7	0.5
Available Fe	mg kg ⁻¹	5.4	5.0
Available Mn	mg kg ⁻¹	6.1	7.7
Available Zn	mg kg ⁻¹	2.2	2.2
Available Cu	mg kg ⁻¹	2.3	2.6

Statistical analysis

The results were subjected to analysis of variance (ANOVA) and significant means were compared with Duncan's multiple range test method using the SPSS 13.0 statistical package program (SPSS Inc., 2004).

RESULTS AND DISCUSSION

Morphological characteristics

Most of PGPR inoculants provided higher stem diameter than that of the control as the mean of 2009 and 2010 (Table 3). The greatest stem diameter of Hungarian vetch was found in BA361 (1.89 mm) PGPR inoculant. This inoculation was followed by BMA479 (1.86 mm) and PFC82 (1.86 mm) plant growthpromoting rhizobacteria inoculants. Many of the PGPR inoculants had a higher plant height than that of the control in the mean of 2009 and 2010 (Table 3). The highest plant height was obtained in PFC82 (51.0 cm) followed by PP315 (49.9 cm), PF84 (49.4 cm) and PAB58 (48.4 cm) rhizobacteria inoculants. Similarly, Cakmakci et al. (2007a) in barley and Javaid (2009) in blackgram [Vigna mungo (L.) Hepper] reported differences in terms of plant height with bacteria inoculations. PAB58 (19.4), PFC82 (18.7) and BA361 (18.5) rhizobacteria inoculants had higher leaf numbers than the control (17.0) in the mean of 2009 and 2010. The other rhizobacteria inoculants caused similar or lower leaf numbers compared to the control (Table 3). In addition, other researchers reported that plant growth-promoting rhizobacteria affected the leaf numbers of soybean (Dashti et al., 1997) and fodder maize (Hamidi 2006). Effects (p<0.01) of plant growthpromoting rhizobacteria on all morphological characteristics in 2009 and 2010 were shown in Figure 1.

Table 3. Effects of plant growth-promoting rhizobacteria (PGPR) on some morphological characteristics, dry matter yield and forage quality in Hungarian vetch (throughout two years)

Treatments	Stem Diameter (mm)	Plant Height (cm)	Leaf Number (leaf plant ⁻¹)	Dry Matter Yield (kg ha ⁻¹)	Crude Protein (%)	C. Protein Yield (kg ha ⁻¹)	ADF (%)	NDF (%)
Control	1.71 ef	43.9 e	17.0 cd	4593 ab	16.8 ab	771 a	31.6с-е	51.3 ab
PPB310	1.80 bc	45.0 de	17.6 b-d	4170 c	16.5 a-c	688 b	30.1 e	47.7 de
BCB51	1.80 bc	45.6 с-е	16.4 de	4191 bc	16.0 b-d	671 b	32.9 bc	44.9 fg
PAB58	1.74 c-e	48.4 a-c	19.4 a	2524 f	15.9 b-e	401 e	30.8 e	50.6 a-c
PFC82	1.86 ab	51.0 a	18.7 ab	2932 e	17.4 a	510 c	31.7 с-е	48.7 cd
PF84	1.79 cd	49.4 ab	16.5 de	4303 a-c	16.1 b-d	693 b	34.5 a	49.1 b-d
AM235	1.66 f	45.3 de	18.3 a-c	3682 d	14.8 e-g	545 c	33.9 ab	42.9 g
PP315	1.66 f	49.9 ab	15.6 e	4538 a-c	14.4 fg	653 b	32.6b- d	43.7g
PAA362	1.71 ef	43.9 e	16.4 de	4653 a	13.9 g	647 b	30.6 e	46.6 d-f
BA361	1.89 a	45.0 de	18.5 ab	4450 a-c	15.4 d-f	685 b	28.7 f	44.6 fg
BMA424	1.73 de	42.6 e	17.7 b-d	4354 a-c	14.9 e-g	649 b	31.4 de	52.5 a
BMA479	1.86 ab	47.4 b-d	17.5 b-d	3116e	15.6 c-e	486 cd	31.5 c-e	46.1 ef
BS521	1.78 cd	47.2 b-d	16.9 de	2897 e	15.2 d-f	440 de	30.7 e	48.3 c-e
Mean	1.77	46.5	17.43	3877	15.6	603	31.6	47.5
2009	1.72b	41.3b	16.04b	2961b	15.9a	470b	30.8b	47.0b
2010	1.81a	51.7a	18.82a	4794a	15.3b	736a	32.4a	48.0a
Т	**	**	**	**	**	**	**	**
Y	**	**	**	**	**	**	**	*
T*Y	**	**	**	**	**	**	**	**

T: Treatments, Y: Year, *Significant at %5 level. **significant at %1 level

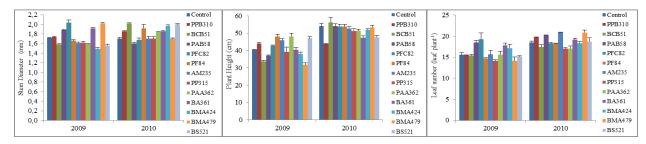


Figure 1. Effects of plant growth-promoting rhizobacteria (PGPR) on stem diameter, plant height and leaf number in 2009 and 2010.

Yield and Quality

Inoculation of Hungarian vetch seeds with plant growth-promoting rhizobacteria caused significant differences in the dry matter yield of Hungarian vetch in the mean of 2009 and 2010 (Table 3). The highest dry matter yield was determined in PAA362 (4653 kg ha⁻¹) rhizobacteria inoculation. However, PAA362 (4653 kg ha⁻¹), the control (4593 kg ha⁻¹), PP315 (4538 kg ha⁻¹), BA361 (4450 kg ha⁻¹), BMA424 (4354 kg ha⁻¹)

¹) and PF84 (4303 kg ha⁻¹) rhizobacteria inoculations had statistically similar yields in terms of dry matter. The other inoculation applications yielded lower dry matter than that of the control (Table 3). Also in other studies, Dashti et al. (1997) in soybean, Cakmakci et al. (2001) and Canbolat et al. (2006) in barley, Rugheim and Abdelgani (2009) in faba bean reported an increase of yield with bacteria inoculations. However, Yolcu et al. (2011) determined that one of five PGPR decreased the dry matter yield of Italian ryegrass. Furthermore, Berggren et al. (2005) reported that the *P. putida* strain A313 reduced pea dry matter production. Conversely, other researchers stated that microorganism strains had no effect on the growth or yield of pea (Chanway et al., 1989) and soybean (Javaid and Mahmood, 2010).

The highest crude protein concentration in Hungarian vetch was found in PFC82 (17.4 %) rhizobacteria inoculant in the mean of 2009 and 2010 (Table 3). However, the PFC82 rhizobacteria inoculant was similar to the control and PPB310 rhizobacteria inoculants. The other rhizobacteria inoculants had similar or lower crude protein concentration than that of the control (16.8 %). Similarly, Estevez et al. (2009) stated that the symbiotic N2 fixation of legume plants does not always produce advantageous results with PGPR and rhizobia co-inoculation. Furthermore, Zaidi et al. (2003) reported that the soil nitrogen content did not show appreciable differences as a result of the inoculation in chickpea. In addition, Berggren et al. (2005) determined that the Pseudomonas putida strain A313 reduced the pea nitrogen content. The highest crude protein yield was determined in the control (771 kg ha⁻¹) in the mean of 2009 and 2010. All treatments had a significantly lower crude protein yield than that of the control (Table 3). Also in another study, Yolcu et al. (2011) reported that one of five PGPR inoculants decreased the crude protein yield in Italian ryegrass. ADF and NDF concentrations were affected by different PGPR inoculations in the mean of 2009 and 2010. BA361 (28.7%) rhizobacteria inoculants gave lower ADF concentration than that of the control (31.6 %). Most of the PGPR inoculations had lower NDF concentrations than that of the control (Table 3). Similarly, Mishra et al. (2008) stated that Dual inoculation, i.e., Azospirillum with indigenous AM consortia decreased ADF and NDF concentrations of Panicum maximum. Effects of plant growth-promoting rhizobacteria (PGPR) on dry matter yields, crude protein concentrations, crude protein yield, ADF and NDF in 2009 and 2010 were shown in Figure 2.

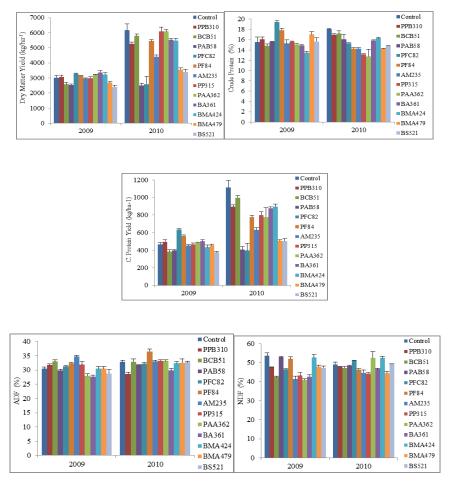


Figure 2. Effects of plant growth-promoting rhizobacteria (PGPR) on dry matter yield, crude protein concentration, crude protein yield, ADF and NDF in 2009 and 2010.

Treatments	В	Ca	Na	K	Mg	Р	S	Cu	Fe	Mn	Zn
Control	43 cd	24781 c	2665 a	8671 f	2814 c	1733 d	2730 e	18.5 bc	999 d	63 b	113 f
PPB310	46 b	25225 c	2639 a	9368 e	2439 e	1710 d	3015 c	17.7 bc	941 d	57 c	125 de
BCB51	42 de	23904 d	2597 a	9763 d	2301 fg	1625 e	2662 e	17.6 c	679 g	56 cd	124 de
PAB58	45 bc	23026 ef	2682 a	8374 g	2339 ef	1720 d	2569 f	20.9 a	723 fg	57 c	147 b
PFC82	40 e	23368 e	2678 a	7953 h	2606 d	1511 f	2875 d	19.1 b	1452 a	66 ab	130 cd
PF84	46 b	24222 d	2611 a	9755 d	2743 c	1717 d	2883 d	17.5 c	764 ef	53 de	128 cde
AM235	43 cd	26672 b	2639 a	11943 b	2762 c	2288 b	2463 g	18.9 bc	583 h	51 e	125 de
PP315	42 de	25108 c	2739 a	10095 c	3085 b	1736 d	2738e	17.8 bc	1158 b	67 a	134 c
PAA362	50 a	27854 a	2590 a	12979 a	3279 a	2190 c	3754 a	20.9 a	818 e	67 a	124 de
BA361	38 f	20822g	2684 a	8700 f	2227 g	2339 b	2697 e	18.1 bc	931 d	65 ab	124 de
BMA424	42 de	22537 f	2447 b	49851	1366 h	2954 a	2229 h	18.3 bc	1073 c	53 de	115 f
BMA479	43 cd	18570 h	2638 a	13019 a	2827 c	1745 d	3241 b	18.9 b	771 ef	56 c	156 a
BS521	45 bc	24942 c	2646 a	9892 cd	2717 c	1676 de	3181 b	17.5 c	757 ef	57 c	120 ef
Mean	43	23925	2635	9654	2577	1919	2849	18.6	896	59	128
2009	43	26833a	2615	10489a	3010a	1647b	2825b	18.8	1208a	69a	142a
2010	43	21018b	2655	8819b	2145b	2190a	2873a	18.4	585b	49b	114b
Т	**	**	*	**	**	**	**	**	**	**	**
Y	ns	**	ns	**	**	**	**	ns	**	**	**
T*Y	**	**	**	**	**	**	**	**	**	**	**

Table 4. Effect of plant growth-promoting rhizobacteria (PGPR) on macro- and micro-nutrient concentrations (mg kg⁻¹) in Hungarian vetch (throughout two years)

T : Treatments, Y: Year, *Significant at %5 level. **significant at %1 level

Macro- and micro-nutrient concentrations

All PGPR inoculants caused variation on macro and micro - nutrient concentrations of Hungarian vetch in the mean of 2009 and 2010. Inoculants of PAA362, PPB310 and PF84 in B, PAA362 and AM235 in Ca, BMA479, PAA362, AM235, PP315, BS521, BCB51, PF84 and PPB310 in K, PAA362 and PP315 in Mg and BMA424, BA361, AM235 and PAA362 in P had higher concentrations than that of the control in the mean of 2009 and 2010 (Table 4). The other PGPR inoculants had similar or lower B, Ca, K, Mg and P concentrations than that of the control. Similarly, Yolcu et al. (2011) reported that some PGPR treatments increased concentrations of K, Ca, Mg and B, and also the other PGPR treatments caused similar or lower concentrations than that of the control in Italian ryegrass. Elkoca et al. (2010) determined an increase of P, K, Ca, B and Mg concentration in common bean with PGPR treatments. Furthermore, Cakmakci et al. (2009) found that PGPR treatments caused a similar or higher concentration of P, K, Ca and Mg than that of the control in spinach leaves. Conversely, it was reported that PGPR treatments had no effect on the K and Mg concentration of barley (Cakmakci et al., 2007a).

Inoculants of PAA362, BMA479, BS521, PPB310, PF84 and PFC82 in S, PAA362 and PAB58 in Cu,

PFC82, PP315 and BMA424 in Fe, PAA362 and PP315 in Mn and BMA479, PAB58, PP315, PFC82, PF84, PPB310, AM235, BCB51, PAA362 and BA361 PGPR treatments in Zn had higher concentrations than that of the control in the mean of 2009 and 2010 (Table 4). The other PGPR inoculants had similar or lower S, Cu, Fe, Mn and Zn concentrations than those of the control. Similarly, Yolcu et al. (2011) reported that some PGPR treatments increased the concentrations of S, Cu and Zn, and also other PGPR treatments had a similar or lower concentration than that of the control in Italian ryegrass. Furthermore, Cakmakci et al. (2007a) stated that treatments of PGPR had a similar or higher Fe, Mn, Zn and Cu concentration than that of the control in barley. Elkoca et al. (2010) found significant increases of Fe, Mn, Cu and Zn concentration in the common bean with PGPR treatments. In addition, Shirmardi et al. (2010) reported that rhizobacteria inoculants produce higher Zn and Cu, similar Fe and similar or lower Mn concentration than that of the control. Conversely, it was determined that PGPR treatments had no effect on the Fe, Mn and Zn concentration of spinach leaves (Cakmakci et al., 2009). Effects of plant growth-promoting rhizobacteria (PGPR) on B, Ca, Na, K, Mg, P, S, Cu, Fe, Mn and Zn concentration in 2009 and 2010 were shown in Figure 3, 4, 5 and 6.

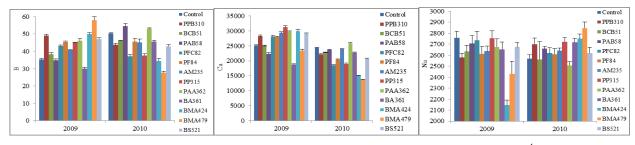


Figure 3. Effects of plant growth-promoting rhizobacteria (PGPR) on B, Ca and Na concentrations (mg kg⁻¹) in 2009 and 2010.

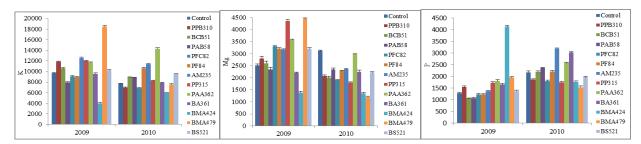
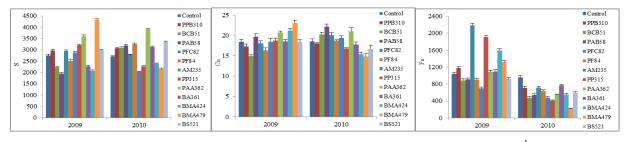



Figure 4. Effects of plant growth-promoting rhizobacteria (PGPR) on K, Mg and P concentrations (mg kg⁻¹) in 2009 and 2010.

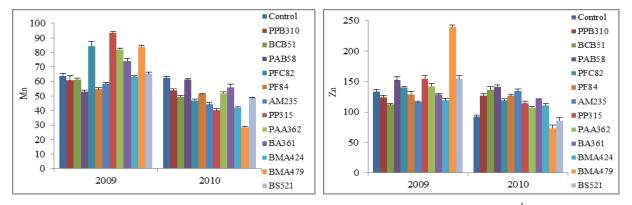


Figure 5. Effects of plant growth-promoting rhizobacteria (PGPR) on S, Cu and Fe concentrations (mg kg⁻¹) in 2009 and 2010.

Figure 6. Effects of plant growth-promoting rhizobacteria (PGPR) on Mn and Zn concentrations (mg kg⁻¹) in 2009 and 2010.

CONCLUSIONS

Overall, some of the PGPR treatments (especially PFC82, BA361 and PAB58) had a positive effect on the morphological characteristics of Hungarian vetch. PAA362 in dry matter yield and PFC82 in crude protein concentration produced a very slight increase. *Rhizobium* spp are naturally present in the root zone of legumes. However, the addition of PGPR may cause competition or incompatibility between native *Rhizobium* spp and PGPR. Therefore, this competition and incompatibility may lead to the reduced efficiency of both bacteria in terms of dry matter yield, crude protein concentration and crude

protein yield. Some of the rhizobacteria (especially BA361) was effective in terms of ADF and NDF. Some rhizobacteria (especially PAA362) increased the macro and micro-element concentrations (B, Ca, K, Mg, P, S, Cu, Mn and Zn) of Hungarian vetch.

The results of our research study show that inoculation of a legume plant seed with the plant growth-promoting rhizobacteria does not cause a significant increase in dry matter yield and hay quality except macro and microelement concentrations. However, our results should be tested by studies to be conducted with various PGPR in different legume forage crops.

LITERATURE CITED

- Acikgoz, E., 2001. Forage Crops. University of Uludag, Publication No: 182, Bursa,584p.
- Ashrafuzzaman, M., F.A. Hossen, M.R. Ismail, M.A. Hoque, M.Z. Islam, S.M. Shahidullah, S. Meon, 2009. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol. 8: 1247-1252.
- Berggren, I., S. Alstrom, J.W.L. van Vuurde, A.M. Martenson, 2005. Rhizoplane colonisation of peas by *Rhizobium leguminosarum* bv. *viceae* and a deleterious *Pseudomonas putida*. FEMS Microbiol Ecol. 52:71-78.
- Bremner, J.M., 1996. Nitrogen-total In: Methods of soil analysis Part III (Bartels, J.M., and Bigham, J.M., eds.). ASA SSSA Publisher Agron No: 5 Madison WI, USA, pp 1085–1121.
- Cakmakci, R., F. Kantar, F. Sahin, 2001. Effect of N₂-fixing bacterial inoculations on yield of sugar beet and barley. J. Plant Nutr. Soil Sci. 164: 527-531.
- Cakmakci, R., F. Dönmez, A. Aydın, F. Sahin, 2006. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhause and two different field soil conditions. Soil Biol Biochem. 38: 1482-1487.
- Cakmakci, R., M. F. Dönmez, Ü. Erdoğan, 2007a. The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turk J. Agric. For. 31: 189-199.
- Cakmakci, R., M. Erat, Ü. Erdoğan, M.F. Dönmez, 2007b. The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. J. Plant Nutr. Soil Sci. 170: 288-295.
- Cakmakci, R., M. Erat, B. Oral, Ü. Erdoğan, F. Sahin, 2009. Enzyme activities and growth promotion of spinach by indole-3-acetic acid-producing rhizobacteria. J Hortic Sci Biotech. 84: 375-380.
- Cakmakci, R., M.F. Dönmez, Y. Ertürk, M. Erat, A. Haznedar, R. Sekban, 2010. Diversity and metabolic potential of culturable bacteria from the rhizosphere of Turkish tea grown in acidic soils. Plant Soil. 332: 299-318.
- Canbolat, M.Y., S. Bilen, R. Cakmakcı, F. Sahin, A. Aydin, 2006. Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biol Fertil Soils. 42: 350-357.
- Chanway, C.P., R.K. Hynes, L.M. Nelson, 1989. Plant growthpromoting rhizobacteria: Effects on growth and nitrogen fixation of lentil (*Lens esculenta* moench) and pea (*Pisum sativum* L.). Soil Biol Biochem. 21: 511-517.
- Dashti, N., F. Zhang, R. Hynes, D. L. Smith, 1997. Application of plant growth-promoting rhizobacteria to soybean (Glycine max [L] Merr.) increases protein and dry matter yield under short-season conditions. Plant Soil. 188: 33-41.
- Elkoca, E., M. Turan, M.F. Dönmez, 2010. Effects of single, dual and triple inoculations with bacillus subtilus , bacillus megaterium and rhizobium leguminosarum bv. phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris L. cv. 'Elkoca-05'). J Plant Nutr. 33: 2104-2119.
- Estevez, J., M.S. Dardanelli, M. Megias, D.N. Rodriguez-Navarro, 2009. Symbiotic performance of common bean and soybean co-inoculated with rhizobia and *Chryseobacterium balustinum* Aur9 under moderate saline conditions. Symbiosis. 49: 29-36.
- Hamidi, A., 2006. The effects of application of plant growth promoting rhizobacteria (PGPR) on the yield of fodder maize (Zea Mays L.). Pajouhesh and Sazandegi. 19: 16-22.

- Javaid, A., 2009. Growth, nodulation and yield of blackgram [Vigna mungo (L.) Hepper] as influenced by biofertilizers and soil amendments. Afr J Biotechnol. 8: 5711-5717.
- Javaid, A., N. Mahmood, 2010. Growth, nodulation and yield response of soyaben to biofertilizers and organic manures. Pak J Bot. 42: 863-871
- Khanna, V., P. Sharma, 2011. Potential for enhancing lentil (Lens culinaris) productivity by co-inoculation with PSB, plant growth-promoting rhizobacteria and rhizobium. Indian J Agr Sci. 81: 932-934.
- Krey, T., M. Caus, C. Baum, S. Ruppel, B. Eichler-Lobermann, 2011. Interactive effects of plant growth-promoting rhizobacteria and organic fertilization on P nutrition of Zea mays L. and Brassica napus L. J. Plant Nutr. Soil Sci. 174: 602-613.
- Mertens, D., 2005a. AOAC Official Method 922,02, Plants Preparation of Laboratuary Sample, Official Methods of Analysis, 18th edn, Horwitz, W., and G.W., Latimer, (Eds), Chapter 3, pp1-2, AOAC-International Suite 500, 481, North Frederick Avenue, Gaitherburg, Maryland 20877-2417, USA.
- Mertens, D., 2005b. AOAC Official Method 975,03, Metal in Plants and Pet Foods, Official Methods of Analysis, 18th edn, Horwitz, W., and G.W. Latimer, (Eds), Chapter 3, pp 3-4, AOAC-International Suite 500, 481, North Frederick Avenue, Gaitherburg, Maryland 20877-2417, USA.
- Mishra, S., S. Sharma, P. Vasudevan, 2008. Comparative effect of biofertilizers on fodder production and quality in guinea grass (*Panicum maximum* Jacq.). J Sci Food Agr. 88: 1667-1673.
- Rugheim, A.M.E., M. E. Abdelgani, 2009. Substituting Chemical Fertilizers with Microbial Fertilizers For Increasing Productivity of Faba Bean (*Vicia faba L.*)in Arid Lands. (in Li S.C., Wang Y.J., Cao F.X., Huang P., Zhang Y. Eds.) Progress in environmental science and technology, Vol II, PTS A AND B: 1910-1918.
- Serin, Y., M. Tan, 2001. Forage Legumes. Ataturk University, Agriculture Faculty Publication No: 190, Erzurum, Turkey, 177 p.
- Shirmardi, M., G.R. Savaghebi, K. Khavazi, A. Akbarzadeh, M. Farahbakhsh, F. Rejali, A. Sadat, 2010. Effect of Microbial Inoculants on Uptake of Nutrient Elements in Two Cultivars of Sunflower (*Helianthus annuus* L.) in Saline Soils. Notulae Scientia Biologicae. 2: 57-66.
- SPSS., 2004. SPSS for Windows, Release 13.0. SPSS Inc. Chicago, IL, USA.
- Van Soest, P.J., 1963. The use of detergents in the analysis of fibrous feeds. II. A. rapid method for determination of the fiber and lignin. JAOAC. 46: 829-835.
- Yolcu, H., 2010. Effect of biologic fertilizers on some morphologic properties and yield of Hungarian vetch. Turkey I. Organic Livestock Congress. Pp. 263-267. 1-4 July. Kelkit/Gümüşhane, Turkey.
- Yolcu, H., M. Turan, A. Lithourgidis, R. Çakmakçı, A. Koç, 2011. Effects of plant growth-promoting rhizobacteria and manure on yield and quality characteristics of Italian ryegrass under semi arid conditions. AJCS. 5: 1730-1736.
- Zaidi, A., Md. S. Khan, Md. Amil, 2003. Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.,). Eur J Agron. 19: 15-21.