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ABSTRACT 

 
The intricate backgrounds present in crop and field images, coupled with the minimal contrast between weed-
infested areas and the background, can lead to considerable ambiguity. This, in turn, poses a significant 
challenge to the resilience and precision of crop identification models. Identifying and mapping weeds are pivotal 
stages in weed control, essential for maintaining crop health. A multitude of research efforts underscore the 
significance of leveraging remote sensing technologies and sophisticated machine learning algorithms to enhance 
weed management strategies. Deep learning techniques have demonstrated impressive effectiveness in a range 
of agricultural remote sensing applications, including plant classification and disease detection. High-resolution 
imagery was collected using a UAV equipped with a high-resolution camera, which was strategically deployed 
over weed, sunflower, tobacco and maize fields to collect data. The VIT models achieved commendable levels of 
accuracy, with test accuracies of 92.97% and 90.98% in their respective evaluations. According to the 
experimental results, transformers not only excel in crop classification accuracy, but also achieve higher 
accuracy with a smaller sample size. Swin-B16 achieved an accuracy of 91.65% on both the training and test 
datasets. Compared to the other two ViT models, the loss value is significantly lower by half, at 0.6450. 
 
Keywords: agriculture; drone; image classification; multi-head attention; remote sensing; vision transformers. 
 
Abbreviations: unmanned aerial vehicles (UAV), deep learning (DL), natural language processing (NLP), vision 
transformers (ViT), convolutional neural networks (CNN), multilayer perceptron (MLP). 

 
INTRODUCTION 

In an ever-changing and progressive industrial 
landscape, agriculture plays a significant role in 
overcoming numerous challenges to achieve high yields 
while maintaining plant growth and quality standards to 
meet the demands of both society and the market. Yet, the 
age-old problem persists in modern agriculture: an over-
reliance on pesticide interventions to boost production 
capacity, enhance quality, and combat unwanted plant 
growth, especially weeds (Grammatikis et al. 2020; 
Ustuner et al. 2020). Weeds compete with primary crops 
for vital development resources such as water, nutrients and 
sunlight. They pose a significant challenge to the outlook 
for agricultural production. The widespread use of 
herbicides in sprayed fields increases environmental 
damage such as air, water and soil pollution. Some weed 
species develop resistance to these chemicals. This 
continuing trend could threaten crop yields if weed 
resistance is fully realized. Site-specific weed and crop 
control management needs to be developed as an area of 
research (Iqbal et al. 2019; Vrbničanin et al. 2017). 

One effective solution is the use of automated crop 
monitoring and inspection systems which offer promising 
environmental and economic benefits. The advantage of 
using robotic technology is that it reduces labour costs and 
minimises the use of herbicides. In addition, weeds often 
have similar colour, texture and shape characteristics as 
crops. Automated weed control systems face the challenge 
of identifying and mapping weeds in the field (Iqbal et al. 
2019; Wu et al. 2020). Unmanned Aerial Vehicles (UAV) 
utilise RGB and additional multispectral imagery to map 
weed density in fields. UAVs capture images as they fly 
over fields at different altitudes (Huang et al. 2018a, 2020b, 
2018c). It uses learning algorithms to distinguish and 
classify weeds from crops by segmenting these large 
images into smaller, regular frames for effective analysis 
(dos Santos Ferreira et al. 2017a, 2019b). 

Unlike conventional machine learning methods, which 
heavily depend on meticulous feature engineering, deep 
learning (DL) techniques autonomously extract features 
from images, yielding a wealth of detailed information. 
This results in notably enhanced performance, particularly 
on larger and more diverse datasets. DL has emerged as a 
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transformative force across numerous domains, including 
agriculture object detection and recognition (Hasan et al. 
2021; Lecun et al. 2015). Convolutional neural networks 
have achieved superiority and success in tasks by extracting 
features from images in object detection and image 
classification processes through convolution filters by 
utilizing principles such as local connectivity, weight 
sharing and translation equivalence (Lecun et al. 2015; He 
et al. 2016). In particular, convolution-based architectural 
networks, including frequently used models such as VGG-
16, GoogLeNet, ResNet-50, ResNet-101, AlexNet and 
Inception-v3, have been widely used for weed detection or 
classification (Madsen et al. 2020; Szegedy et al. 2016; Niu 
et al. 2021). 

Attention mechanisms, developed primarily for natural 
language processing (NLP), have made significant 
advances and have shown significant performance 
improvements compared to previous versions (Niu et al. 
2021; Vaswani et al. 2017). However, its adaptation to 
vision-related tasks has limited the significant 
computational demands that correspond to the higher 
number of pixels in images compared to NLP word studies, 
making traditional attention models unsuitable for use 
(Hasan et al. 2021; Lu et al. 2020). A significant increase 
in the use of transformer-attention models can be seen in 
computer vision with the advent of the sign-relative 
transformer (Li et al., 2022). Unlike CNN-based methods 
operating at the pixel level, ViT treats image patches as 
distinct units of information during training, utilizing self-
attention modules to discern their interrelations. ViT has 
demonstrated superior image classification accuracy over 
CNNs when ample training data and computational 
resources are available (Beyer et al., 2022). Nevertheless, 
the application of vision transformer models for tasks such 
as weed and crop classification using high-resolution UAV 
images remains largely unexplored. 

In our study, we introduce an innovative methodology 
for automatically identifying weeds and crops in 

multispectral images captured by drones, strengthening the 
vision transformer approach. Our research setup involves a 
drone equipped with a high-resolution camera, facilitating 
image acquisition across diverse crop plots under real-
world conditions, encompassing tobacco, sunflower, 
maize, and weed varieties (Czymmek et al., 2019). Our 
primary aim is to investigate the viability of transformer 
architectures for specialized tasks like plant recognition in 
UAV imagery, given the scarcity of labeled data. To 
address this challenge, we employ data augmentation and 
transfer learning techniques, supplemented by an 
evaluation of the self-attention mechanism using vision 
transformers across varying proportions of training and 
testing data within a cross-validation framework. Our 
contributions encompass the integration of low-altitude 
aerial imagery from UAVs with self-attention algorithms 
for crop management, pioneering exploration of 
transformer models for weed and crop image classification, 
and the assessment of deep learning algorithm 
generalization capabilities in crop plant classification 
across different model variations (Alzahrani et al., 2023). 

MATERIALS AND METHODS 

Study Sites 

This study focused on the cultivation of corn, 
sunflower, and tobacco crops. Drone imagery was obtained 
from multiple plots in the Kuzmin village of the Sremska 
Mitrovica region in Serbia during May and June of 2023 
(45.0223 N, 19.4052 E) (Figure 1). Table 1 presents the 
geographical details and agricultural configurations for the 
crops. An experiment spanning multiple sites was 
conducted to assess the system's resilience across various 
ecological zones, aiming to comprehend its adaptability 
through the diversity of crops and fields involved in the 
study. The research focuses on industrial crops, with each 
station subjected to distinct treatment methodologies 
(Culpan, 2023). 

 

 
Figure 1. Geographical position of the research area. (S-Sunflower, M-Maize and T-Tobacco, base image from Google Earth) 
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Table 1. Performance comparison with the state-of-the-models. 

  Train Loss Train Accuracy Test Loss Test Accuracy 
Swin-B 0.6450 0.9165 0.7256 0.8733 
Vit-B16 1.2252 0.9331 1.2516 0.9297 
Vit-B32 1.3532 0.9133 1.2878 0.9098 

 

The sunflower images were captured on the 12th (2-leaf 
stage) and the 14th (4-leaf stage) of June 2023. Photographs 
of the maize and tobacco were taken during the 3-leaf 
phase, and on the 8-leaf phase. The density of planting 
ranges from 33,000 to 45,000 plants per hectare. Soils with 
excellent filtration capabilities were identified. 
Additionally, irrigation facilities were available for 95% of 
the plots, allowing for regulated water conditions (Kayin et 
al., 2024). 

UAV data collection 

In this research, imagery was sourced from fields of 
tobacco, sunflower, and maize, which were sown with 
inter-row spacings of 60-70 cm. The photographs were 
taken using a camera mounted on the DJI Mavic 3 
multispectral drone. A corpus of 350 RGB photographs was 
compiled, each with a resolution of 5472 x 3648 pixels and 
a color depth of 24 bits (Louargant et al., 2017). The 
environmental conditions during the acquisition of these 
images were obtained with air temperatures ranging from 
24.0 to 26.0 °C and relative humidity levels ranging from 
55% to 65%. The drone was equipped with a camera 
stabilized with a 3-axis brushless gimbal to maintain 
consistent camera alignment even in strong wind 
conditions. Flight heights were deliberately set at 10 meters 
for sunflower plots and 12 meters for maize and tobacco 
plots. These heights have been optimally chosen to ensure 
high quality image capture while reducing the duration of 
drone flights. For maize fields, the increased height was 
necessary due to more mature plant growth and wing 
winds. The program of aerial imagery acquisition in 
different fields was planned to be done at an early stage 
based on the review and assessment of weed infestation 
levels in the field. This approach, which spread the imagery 
over multiple days, resulted in a range of variability and 

shadow elements in the images, with the tobacco field 
photographed in the afternoon light conditions, and the 
sunflower and maize fields photographed in the midday 
light conditions with the sun at its full perpendicular 
position. 

Prior to launch, the flight path of the UAV was 
meticulously planned, setting the flight velocity at 2 meters 
per second. To enhance the quality of image stitching, it 
was imperative that the overlap of image footprints 
exceeded 80% both longitudinally and laterally along the 
flight path. Positional accuracy and altitude control were 
rigorously maintained within a tolerance of 1 meter and 0.2 
meter, respectively, utilizing the Global Positioning System 
(GPS) and a barometric sensor. Consistent resolution of 
0.33 centimeters per pixel was upheld across three different 
sites, with adjustments in flight elevation compensating for 
variations in camera pixel sizes to ensure uniform 
resolution across all imagery. 

Image Pre-Processing 

For the purposes of this analysis, the model required a 
comprehensive aerial photograph of the area under 
investigation. Consequently, prior to conducting any 
model-based analysis, it was necessary to merge the UAV 
captured images into a singular, cohesive site map. This 
image integration process was facilitated using the 
Pix4Dmapper software (Reedha et al., 2022). All images 
captured by the UAV were uploaded into the Pix4D 
software, where the image coordinate system, geolocation 
data, camera specifications, and other pertinent details were 
calibrated in alignment with the specifications of the UAV 
and its camera system (refer to Figure 2). 

 

 
Figure 2. Sequence of steps for image preprocessing and subsequent model forecasting. 
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From the assembled orthophotos, we extracted specific 
image segments representing both crops and weeds. These 
segments were then adjusted to a uniform size of 96x96 
pixels. The rationale behind this specific size selection 
stems from the fact that the dimensions gravitated towards 
a median of 96 pixels, suggesting a possible proportional 
relationship between the UAV's operational altitude and the 
physical scale of the crops documented in the research 
plots. Weeds were entered into the algorithm by creating 
classes for weeds, soil and three different agricultural 
crops. 

Vision Transformers (ViT) 

Image transducers use the operating principles of 
transducer models for NLP tasks. It has pioneered a 
groundbreaking change in deep learning methodology by 
demonstrating the ingenuity of computer vision. The 
traditional dominance of convolutional neural networks has 
been challenged by the success of transformative models in 
visual data analysis. NLP-based image transformers are 
attracting the interest of researchers by providing a 
breakthrough architecture for image classification. The 
versatility of transformer models also marks a paradigm 
shift beyond traditional CNN frameworks (Alzahrani et al., 
2023). 

As described in Vaswani et al's groundbreaking 2017 
study, “Attention is All You Need” the core principles of 
transformers revolve around self-attention mechanisms 
(Vaswani et al., 2017). As NLP endeavors to demonstrate 
competence in managing sequential data, the level of 
importance such mechanisms skillfully assign to different 
parts of the input data will have increased. These ground-
breaking applications of vision transformers apply the self-
attention perspective to image inputs and conceptualize 

them not as conventional pixel grids but as hierarchical 
arrays of patches, similar to the processing of words in 
sequential sentences. 

Given an image of dimensions H x W x C, the ViT 
model proceeds by segmenting the images into patches of 
uniform size, where H represents height, W width and C 
colour channels, and each patch size is set to have 
dimensions PxPxC. The total number of patches generated 
from an image (N) is determined by dividing the total 
image area by the area of a single patch and is calculated as 
N = (H/P) x (W/P). For example, for images to be fed at 
224x224 with a selected model's patch size of 16, the 
formula [(224/16) x (224/16)] = [14 x 14] results in a total 
of 196 patch or array tokens (Xia et al. 2024; Kang et al. 
2021). 

The way ViT works starts with segmenting images into 
uniform patches. These patches are then flattened, linearly 
transformed and enriched with spatial and positional 
embeddings to preserve spatial and positional context and 
encoded in a manner similar to the text string processing in 
transducers. The subsequent stage entails passing the 
resultant sequence of image patch embeddings through a 
canonical transform coder architecture (Zhai et al., 2021). 
The encoder logic consists of multiple layers of multi-head 
self-attention and feed-forward neural networks, allowing 
the model to selectively focus on and interpret different 
regions of the image, thereby distinguishing complex 
relationships between patches (refer to Figure 3). The 
output of the transform encoder typically completes the 
image classification task by generating predictions based 
on the embedded representations, provided that the output 
of the transform encoder is fed to the classification head, 
which typically comprises a linear layer. 

 

 
Figure 3. The vision transformer architecture flow shows patch process. 

 

After segmenting the images into patches, the next step 
is to convert these patches into a one-dimensional format. 

This transformation can be described mathematically as 
H*W*C = N*P*P*C. In general, for one-dimensional basis 
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vector scenarios, the channel value is set to C=1. The 
flattened patches are mapped to a space equation using a 
linear transformation layer to produce vectors of size D 
(Khan et al., 2021). The 'classification token' is created at 
this stage and passed to the next stage as a class token. The 
element used as the class token is concatenated with each 
of the linearly transformed one-dimensional patch vectors 
and continues, retaining the classification information in 
the array. The transformer network architecture processes 
the patches and the class token along with the initial 
positioning in the array. The learnable embedding created 
in dimension D is evaluated for use in classification. The 
methodology of this work reflects the natural language 
processing strategy of the BERT architecture for image 
classification within the ViT framework (Bazi et al., 2021). 

To preserve the spatial relationships of the original 
image during the positional encoding process, positional 
encodings are sequentially added to the patch embeddings. 
These encodings contain no information about the 2D 
spatial arrangement of the patches and require the model to 
learn the spatial relationships between patches from 
scratch. The transform encoder is fed to the encoder by 
adding the concatenated patch and position embedding 
sequence. In the presence of the encoder, the sequence is 
transformed, allowing the class token introduced at the 
beginning of the sequence to focus on and assimilate 
important features from the patches. This process allows a 
comprehensive embedding process to be learnt, particularly 
for classification purposes. After the encoder, the class 
token integrated with the residual information is used to 
generate a prediction vector by multiplying it with the 
output of a multilayer perceptron (Han et al. 2020; Suh et 
al. 2018). After the normalisation layer, the prediction 
vector becomes capable of image classification using the 
softmax function and results in a probability distribution. 
Each image frame is transferred by adding a layer of 
adaptability and complexity to the architecture of Vision 
Transformer models at different scales, such as basic and 
tiny models. The architecture of ViT models, the size of 
patches, the size multiplicity of embeddings and the self-
attention mechanism are often referred to as the width of 
the model. The depth of the encoder layers, the number of 
attention heads and the dimensions of the MLP block are 
called the MLP width and define several basic parameters. 
These variables allow the ViT model to be customised and 
optimised for specific task definitions and data sets 
(Suravarapu et al. 2023; Zhao et al. 2023). 

Attention Mechanism 

The basic architecture of the converters has enabled 
significant advances in image analysis through the 
implementation of query, key and value vectors that are 
central to their operation. Scaled Dot Product Attention is 
the core component of this architecture. It allows dynamic 
weighting of the importance of different parts of the input 
data. The mathematical formula is defined below as 
equation (1). Calculates the dot products of queries by 
scaling them with keys and adding their attention scores. 
This process improves the model's ability to focus on 
relevant parts of the data, providing an innovative approach 

to understanding both textual and visual information (Ma 
et al. 2023; Mauricio et al. 2023). 

Self Attention (Q,K,V) = softmax (𝑄𝑄𝑄𝑄
𝑇𝑇

�𝑑𝑑𝑘𝑘
)*V   (1) 

In the scaled dot attention mechanism, the variables Q, 
K and V represent the query vector, transformed key vector 
and value vector. The scaling process (d_k) is very 
important for the dimensionality of the key vector. This 
scaling is done to smooth the dot products and ensure that 
they remain within the appropriate range. This facilitates a 
steady gradient decay during the training of deep learning 
models. The purpose of using (d_k) is to help reduce the 
potential problem of overly large dot product values that 
can lead to decreasing derivatives (Shin et al. 2023; Abdalla 
et al. 2019; Thakur et al. 2023). Preservation of model 
sensitivity to input subtleties. This balancing act is the basis 
of attention scoring. This determines how each element in 
the sequence should manage attention among all the other 
elements. It increases the model's ability to use relevant 
information when constructing representations. 

In the self-attention process, for each element in the 
array, the mechanism computes the dot product between the 
query representation and the key representations of all other 
entries. The data normalised by applying the softmax 
operation is transferred to the result set with the attention 
score, which measures the amount of focus each item 
should have on all other items in the array. 

Since the transformer architecture model assimilates the 
inputs in a sequential manner, it is through spatial 
embeddings that parallel data processing is allowed. In 
encoding the sequence information of the input, 
embeddings are very important in encoding the sequence 
information for the transducer to understand and send to the 
next step (Zhao et al. 2023; Mauricio et al. 2023). The 
transformer uses its own attention to collectively assimilate 
the information from each element of the input. It must 
preserve the order of the data, which is crucial for the 
operations of the converter, and spatial embeddings must 
be explicitly added to the input. The positionally enriched 
inputs are structured into an array with an integrated class 
embedding based on positional indices to help categorise 
the input data after the self-attention change (Suravarapu et 
al. 2023; Ma et al. 2023). 

Self-attention works by mapping a set of input vectors 
onto a set of output vectors, and independently assessing 
the importance of inputs relative to others. It highlights the 
importance of context in the process by allowing the model 
to focus on appropriate aspects of the input. The results of 
the self-attention module are the sum of aggregated 
attention scores covering contextual relevance across the 
sequence. The transformer framework is fundamentally 
built around these attention mechanisms, often utilizing a 
multi-head approach to expand the model's capability to 
focus on various parts of the input simultaneously (Thakur 
et al., 2023). The scaled dot-product attention and its 
extension into multi-head attention are pivotal components 
of this model, which are further elucidated in Figure 4 of 
the referenced work. 
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Figure 4. Attention mechanism (Niu et al. 2021). 

Evaluation Metrics 

We utilized the latest classification methods of Swin 
B16, ViT-B16 and ViT-B32 models in our project. The 
research utilized the method of cross-validation to validate 
the robustness and precision of the proposed models. Cross-
validation, which evaluates the performance of a model on 
test data not used during training, is widely used because of 
its robustness. It is a method that is attracting attention as a 
resampling strategy because of its low bias rate. As the 
classes in our dataset are evenly distributed, we also applied 
a layered k-fold approach. Ensure that all classes are 
represented in the validation phase of each fold (Huang et 
al. 2018; Reedha et al. 2022). 

Deep learning models are evaluated by comparing their 
performance against a benchmark of excellence, known as 
the gold standard. The accuracy metric is a measure of the 
model's predictive ability and is calculated as the ratio of 
correct predictions to the total number of predictions made. 
(Alzahrani et al. 2023). 

Accuracy = (𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇)
(𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇)

    (2) 

Precision = 𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)

     (3) 

Precision is often used to evaluate the performance of 
deep learning classification models. Precision indicators 
are calculated as the ratio of true positive predictions to the 
sum of true positive and false positive predictions. 
Precision indicates the model's ability to correctly identify 
positive specimens among all specimens it classifies as 
positive (Sunil et al., 2023). 

Recall = 𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)

      (4) 

F1 score = 2*(𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅)
(𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅)

    (5) 

Recall measures the proportion of true positives in the 
dataset that the model successfully identifies as positive. 
Simplified, it measures the proportion of true positive 
predictions made by the model from all positive samples in 
the dataset. Recall is critical to understanding how 

effectively the model is able to identify and classify all 
relevant examples. The F1 score is a widely accepted 
benchmark for evaluating performance classification 
scenarios (Hand et al. 2009; Ozcift et al. 2011). It is a 
method of harmonising and balancing the trade-off 
between precision and recall by calculating harmonic 
averages. By integrating both metrics, the F1 score 
provides a nuanced view of model performance beyond just 
accuracy. 

RESULTS 

Each model was trained using a leave-one-out 
technique with triple cross-validation. The model based on 
the basic architecture was trained and cross-validated with 
triple folds and achieved the highest average accuracy of 
93.31%. Table 1 illustrates all experimental outcomes 
related to crop weed classification across the three ViT 
models. This approach involved training the models on 
3150 samples (70%), validating them with 900 samples 
(20%), and testing them with 450 image samples (10%). 

Analysis of the experimental results reveals that the 
Swin-B16 model surpasses the Vision Transformer models. 
The Swin-B model achieved the highest accuracy of 
91.65% and 0.6450 loss, while the ViT-B16 model closely 
trailed with a 93.31% accuracy and a minimal loss of 
1.2252. All network families exhibit impressive accuracy 
and F1-score, with the vision transformer models 
demonstrating the most effective prediction performance in 
classifying crop and weed images (shown Table 2). The 
table illustrates the data, revealing notably high recall 
metric values for each specified category within the dataset. 
The Swin-B16 model underwent training with batch sizes 
set at 32, utilizing the SGD optimizer over 20 epochs. 
Impressively, the model attained an accuracy of 91.65% on 
both the training and testing datasets. Compared to the 
other two models, the loss value is notably lower by half, 
measuring at 0.6450. 

The Swin-B16 model exhibited remarkable 
performance across the first two experiments, displaying 
consistently high recall and F1-score values. Notably, its 
performance peaked in the first fold, indicating its efficacy 
in accurately identifying various classes within the dataset. 
At the third fold the model showed a decrease in sensitivity, 
particularly evident in the maize class where sensitivity 
dropped to 54%. Despite this, the model was successful in 
discriminating between weed classes and demonstrated the 
ability to effectively discriminate between different 
vegetation types. 

The ViT-B16 produced consistently impressive results 
on all three folds. Remarkably, the sensitivity values for the 
soil class remained high in every experiment, highlighting 
the robustness of the system in correctly classifying this 
category. However, the model showed relatively lower 
sensitivity in the sunflower class compared to other 
categories. This points to potential difficulties in accurately 
identifying this crop. It was also observed that the recall for 
weed classification was relatively low. This indicates some 
limitations in the accurate detection of weed samples. 
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Table 2. Evaluated the performance of the models derived from a three-fold cross-validation. 

  Experiment 1 Experiment 2 Experiment 3 
Swin-B16 Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score 

Maize 0.9700 1.0000 0.9800 0.8900 1.0000 0.9400 0.5400 0.8200 0.6500 
Soil 0.9700 1.0000 0.9800 0.9900 0.9400 0.9600 0.6100 0.3000 0.4000 

Sunflower 0.9800 0.9200 0.9500 0.9900 0.9600 0.9700 0.7600 0.9900 0.8600 
Tobacco 0.9300 0.9700 0.9500 0.9900 0.9800 0.9800 0.7700 0.9400 0.8500 

Weed 0.9400 0.8900 0.9100 0.9500 0.9100 0.9300 0.9800 0.4700 0.6300 
Vit-B16 Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score 
Maize 0.9064 0.9936 0.9480 0.9873 0.9936 0.9904 0.7635 0.9936 0.8635 
Soil 1.0000 0.8782 0.9352 1.0000 0.9295 0.9635 0.9923 0.8200 0.9021 

Sunflower 0.7919 1.0000 0.8839 0.9286 1.0000 0.9630 0.9398 1.0000 0.9689 
Tobacco 0.9792 0.9038 0.9400 1.0000 1.0000 1.0000 1.0000 0.9808 0.9903 

Weed 0.9160 0.7692 0.8362 0.9416 0.9295 0.9355 0.9141 0.7500 0.8239 
Vit-B32 Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score 
Maize 0.8864 1.0000 0.9398 0.8211 1.0000 0.9017 0.9176 1.0000 0.9571 
Soil 0.9430 0.6731 0.7749 0.9922 0.8205 0.8982 1.0000 0.8782 0.9352 

Sunflower 0.8254 1.0000 0.9043 0.9722 0.8974 0.9333 0.9689 1.0000 0.9842 
Tobacco 0.9810 0.9936 0.9873 0.9017 1.0000 0.9483 0.9809 0.9872 0.9840 

Weed 0.7465 0.6795 0.7114 0.8889 0.8205 0.8533 0.9032 0.8974 0.9003 
 

As can be seen in the Table 3, the ViT-B32 model 
showed different sensitivity values in the three folds. On 
the first fold, the precision values indicate a relatively high 
classification accuracy, ranging from 74% to 98%. 
However, in subsequent folds, the precision values varied 

between 82% and 100% and different values were observed 
for each class. In particular, the maize and sunflower 
classes showed excellent recall in all trials. The 
effectiveness of the model in accurately identifying these 
specific product types is highlighted. 

 

Table 3. Location and crop planting settings. 

Crop Type Sunflower Tobacco Maize 
Latitude 19.3873 19.3846 19.3873 

Longitude 44.9829 45.0335 44.9829 
Date 26/05/2023 22/06/2023 27/05/2023 

Flight Height (m) 10 12 12 
Row Spacing (m) 0.70 0.65 0.60 
Plant Spacing (m) 0.25 0.30 0.25 

 

DISCUSSION 

The production of maize and sunflowers is of global 
importance, with high economic and commercial 
nutritional value. However, they are susceptible to various 
diseases and weather events that pose a significant threat to 
both yield and quality. Early and accurate detection and 
diagnosis of weed infestations is essential for implementing 
field-based control strategies and preventing potential 
losses. This study reaffirms the efficacy of the proposed 
methods for distinguishing between crops and weeds, 
offering valuable insights into the performance of various 
models. The findings of this research demonstrate notable 
accuracy, laying a solid foundation for the development of 
automated systems capable of detecting and managing 
areas affected by weeds in their early stages. Ultimately, 
such advancements are poised to enhance the efficiency 
and sustainability of cultivated crop production.  

All models underwent training and validation using 
identical crop samples, encompassing all classes from the 
same agricultural field. Our investigation reveals that when 

applied to our agricultural dataset featuring five classes for 
weed identification, the ViT B-16 architecture, pretrained 
on the ImageNet dataset, surpasses other architectures and 
exhibits enhanced resilience to fluctuations in dataset size. 
Employing ViT for weed classification yields promising 
outcomes, particularly when dealing with a limited array of 
classes. In forthcoming experiments, we intend to broaden 
the dataset by incorporating additional classes to 
encompass a wider spectrum of crop types. Introducing 
supplementary classes may potentially lower the 
classification top-1 score, especially when categorizing 
plants with analogous shapes and colors. Nevertheless, the 
ViT is anticipated to yield superior results compared to the 
Swin-B16 model, given its demonstrated robustness. 
Although the loss value of the Swin model is lower it 
cannot provide high precision, recall and F1 scores (Reedha 
et al. 2022; Wang et al. 2023). 

During training, the increments should be applied in 
such a way as to cover different environmental variations, 
such as variations in outdoor brightness. The use of 
augmentations plays an important role in promoting model 
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convergence and generalisation by changing the examples. 
This increases the ability of the model to generalise 
effectively by facilitating the representation of differences 
in the dataset. If the image acquisition conditions are 
significantly different, the model's performance may 
degrade. For example, capturing images of plants after 
rainfall may result in a change in vibrancy and shape 
compared to those captured in sunlight. To address these 
inconsistencies, additional image acquisition is planned for 
the coming season to ensure robust performance under 
changing environmental conditions. 

CONCLUSIONS 

The evolving agricultural environment requires the 
development of new systems that can accurately identify 
weeds and crops in different environmental conditions. The 
solution we used in the classification study overcomes this 
challenge by exploiting the latest advances in deep 
learning, pioneered in NLP and now proving useful in 
computer vision. ViT models have demonstrated superior 
performance accuracy in a wide range of applications. The 
model run on the ViT-B16 model using 3 different folding 
techniques emerges as the best performing model, 
achieving a test accuracy of 92.97%. Our results also show 
that the use of smaller patches contributes to improved 
accuracy. Looking ahead, we aim to develop a hybrid 
approach to address the complex challenges of crop-weed 
separation and transformer model design with convolution 
integration. 
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